Orai-STIM-mediated Ca2+ release from secretory granules revealed by a targeted Ca2+ and pH probe.

نویسندگان

  • Eamonn J Dickson
  • Joseph G Duman
  • Mark W Moody
  • Liangyi Chen
  • Bertil Hille
چکیده

Secretory granules (SGs) sequester significant calcium. Understanding roles for this calcium and potential mechanisms of release is hampered by the difficulty of measuring SG calcium directly in living cells. We adapted the Förster resonance energy transfer-based D1-endoplasmic reticulum (ER) probe to develop a unique probe (D1-SG) to measure calcium and pH in secretory granules. It significantly localizes to SGs and reports resting free Ca(2+) of 69 ± 15 μM and a pH of 5.8. Application of extracellular ATP to activate P2Y receptors resulted in a slow monotonic decrease in SG Ca(2+) temporally correlated with the occurrence of store-operated calcium entry (SOCE). Further investigation revealed a unique receptor-mediated mechanism of calcium release from SGs that involves SG store-operated Orai channels activated by their regulator stromal interaction molecule 1 (STIM1) on the ER. SG Ca(2+) release is completely antagonized by a SOCE antagonist, by switching to Ca(2+)-free medium, and by overexpression of a dominant-negative Orai1(E106A). Overexpression of the CRAC activation domain (CAD) of STIM1 resulted in a decrease of resting SG Ca(2+) by ∼75% and completely abolished the ATP-mediated release of Ca(2+) from SGs. Overexpression of a dominant-negative CAD construct(CAD-A376K) induced no significant changes in SG Ca(2+). Colocalization analysis suggests that, like the plasma membrane, SG membranes also possess Orai1 channels and that during SG Ca(2+) release, colocalization between SGs and STIM1 increases. We propose Orai channel opening on SG membranes as a potential mode of calcium release from SGs that may serve to raise local cytoplasmic calcium concentrations and aid in refilling intracellular calcium stores of the ER and exocytosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular geography of IP3 receptors, STIM and Orai: a lesson from secretory epithelial cells.

Pancreatic acinar cells exhibit a remarkable polarization of Ca2+ release and Ca2+ influx mechanisms. In the present brief review, we discuss the localization of channels responsible for Ca2+ release [mainly IP3 (inositol 1,4,5-trisphosphate) receptors] and proteins responsible for SOCE (store-operated Ca2+ entry). We also place these Ca2+-transporting mechanisms on the map of cellular organell...

متن کامل

Mutant IP3 receptors attenuate store-operated Ca2+ entry by destabilizing STIM–Orai interactions in Drosophila neurons

Store-operated Ca2+ entry (SOCE) occurs when loss of Ca2+ from the endoplasmic reticulum (ER) stimulates the Ca2+ sensor, STIM, to cluster and activate the plasma membrane Ca2+ channel Orai (encoded by Olf186-F in flies). Inositol 1,4,5-trisphosphate receptors (IP3Rs, which are encoded by a single gene in flies) are assumed to regulate SOCE solely by mediating ER Ca2+ release. We show that in D...

متن کامل

In this issue of Channels

Let me first take the opportunity to thank all the authors for their excellent contributions to this special issue dedicated to the relatively young field of “STIM/Orai” research. I would also like to express my sincere thanks to the Channels Editor-in-Chief, Gerald Zamponi, who approached me more than a year ago with this project and the extraordinary dedicated Channels staff, in particular, H...

متن کامل

Orai channel-mediated Ca2+ signals in vascular and airway smooth muscle.

Orai (Orai1, Orai2, and Orai3) proteins form a family of highly Ca(2+)-selective plasma membrane channels that are regulated by stromal-interacting molecules (STIM1 and STIM2); STIM proteins are Ca(2+) sensors located in the membrane of the endoplasmic reticulum. STIM and Orai proteins are expressed in vascular and airway smooth muscle and constitute the molecular components of the ubiquitous s...

متن کامل

Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells.

A key event leading to exocytosis of pancreatic acinar cell zymogen granules is the inositol 1,4,5-trisphosphate (InsP3)-mediated release of Ca2+ from intracellular stores. Studies using digital imaging microscopy and laser-scanning confocal microscopy have indicated that the initial release of Ca2+ is localized to the apical region of the acinar cell, an area of the cell dominated by secretory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 51  شماره 

صفحات  -

تاریخ انتشار 2012